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Ions of the carbon clusters C60 and C70 derived from mixtures 

of fullerenes1 extracted from soot2 are accompanied by satellite 
ions in low abundance. Changes in the relative ion abundances 
of these peaks with the method of sample preparation and as a 
function of evaporation into the mass spectrometer suggest that 
there are several different fullerene adducts, corresponding to the 
addition of 14, 15, 16, and 17 daltons (Da). The mass increases 
are assigned to CH2, CH3,

3 O,45 and OH, respectively.6 

The carbon clusters C60, C70, and their derivatives were ex­
tracted from soot prepared in a graphite arc operating under an 
ac current of 200 A.2 The satellite ions occur for C60", C60

+, C70", 
and C70

+. Their presence in different types of mass spectra 
(electron attachment using NH3 as the chemical-ionization reagent 
and electron impact to generate singly and doubly charged ions) 
discounts their production via ionic processes occurring in the mass 
spectrometer.7 The omnipresence of the adducts of C60 and C70 
indicates that they are prepared concurrently with the fullerenes 
in either the arc-welding synthesis or the continuous extraction 
process, or both. 

Displayed in Figure 1 is a small portion of the electron-at­
tachment mass spectrum of a fullerene mixture. It shows a group 
of peaks that appear as a weak (3% relative abundance) satellite 
of the C70" signal. The spectrum demonstrates that there are at 
least four discrete C70 adducts with negative ions corresponding 
to the masses 854, 855, 856, and 857 Da with contributions from 
naturally occurring 13C accounting for the overall profile.8 An 
equivalent spectrum was recorded for the C60 adducts. The 
evaporation profiles (temporal dependence of ion abundance during 
sample evaporation into the mass spectrometer) of the +16 and 
+17 adducts OfC60 had different shapes, providing further evidence 
for the existence of two compounds. 

Collision activated dissociation (CAD) experiments9'10 with 
xenon at 40 eV and 1.8 mTorr revealed that (M + 17)" (M = 
C60 and C70) species fragment to yield C60" and C70", respectively. 
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Figure 1. Electron-attachment mass spectrum of a soot extract in 
benzene showing C70 satellite peaks. 
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Figure 2. (a) Electron-attachment mass spectrum of raw soot extract in 
1:1 CD2Cl2/hexanes; (b) after 3-h irradiation, showing the (C60O+-
(CH2),)- and (C70O+(CH2)fl)" adducts. 

The (M + 16)" adduct of C60 fragmented to C60" in the course 
of more energetic collisions (100 eV), The vigorous conditions 
needed for CAD suggest that the adducts are covalently bonded. 
The (M + 17)" adducts are ascribed to the addition of the elements 
O and H, and the (M + 16)" ions are assigned as O adducts. The 
(M + 14)" and (M + 15)" peaks are presumably CH2 and CH3 
adducts, respectively. These observations were corroborated by 
the positive-ion, electron-impact spectra, which confirmed the 
existence of the four types of adducts. However, signal-to-noise 
characteristics were no longer adequate for CAD experiments. 

Results of a series of experiments under various conditions of 
arcing, extraction, and treatment of the extract suggest that 
photochemical processes are involved in derivatization of fullerenes. 
The C60O adduct was enhanced, relative to C60 and the C60 + OH 
adduct, by 1 order of magnitude upon UV irradiation of solutions 
in air." A similar but less dramatic change occurred for the C70O 

(11) The solutions in soft glass or quartz vials were irradiated with a 
150-W mercury arc lamp for 1-4 h. 
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Figure 3. (a) Electron-attachment mass spectrum of ether washings of 
raw soot extract; (b) after 45-min irradiation, showing the (C60On)" and 
(C70On)- adducts. 

adduct. These results clearly indicate that the oxides are created 
outside the mass spectrometer. 

Even more significant is the observation that the M + 16 adduct 
is the first member of a series of derivatives we interpret as 
sequential cyclopropanation and epoxidation products of mon­
oxides. For example, Figure 2a shows the electron-attachment 
spectrum of benzene extracts of graphitic soot. Ultraviolet ir­
radiation for 1 h (Figure 2b) not only increased the (M + O)" 
peaks substantially (with appropriate isotopic peaks at higher 
mass) but also produced peaks that correspond to (C60O + 
(CH2)„)- where n - 1, 2, 3, 4, 5, and 6 and (C70O + (CH2),)" 
where n = 1 and 2. However, these products were not increased 
upon irradiation of fullerene mixtures that were thoroughly washed 
with ether. This suggests that the ether washing removed an 
unidentified compound that participated in the photochemical 
reaction of the fullerenes. 

In an attempt to concentrate the reactive compound we irra­
diated ether washings that contained small amounts of C60 and 
C70 and discovered a new photochemical reaction. As expected, 
we saw increased yields of C60O and C70O. However, rather than 
sequential CH2 additions we observed sequential oxygen atom 
additions; the monoxides were accompanied by peaks corre­
sponding to C60On, where n = 2, 3, 4, and 5, and C70On, where 
n = 2. Mass spectra of these ether washings recorded before and 
after irradiation are shown in Figure 3. Similar spectra were 
obtained on irradiation of ether washings redissolved in benzene, 
thus discounting ether as the oxygen source. 

Low-mass hydrogen containing compounds, relative to C60. are 
produced in the arc-welding synthesis, and their effect on the 
aforementioned photochemistry is being investigated. Isolation 
and characterization of the adducts themselves are also underway. 
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The intermolecular electron transfer (ET) between cytochrome 
c and cytochrome c oxidase (CcO) has attracted considerable 
attention in recent years.1-6 It is still controversial, however, which 
one of the two low-potential centers (CuA and cytochrome a) is 
the primary electron acceptor in the native form of the enzyme. 
The determination of the initial electron acceptor is of particular 
interest because of the possible involvement of one of these two 
centers in proton pumping.7,8 

In this communication, we report kinetic studies of the intra-
complex ET between cytochrome c and CcO in both the native 
and CuA-depleted forms using the laser flash photolysis technique 
recently developed by Hazzard et al.5 In this experiment, cyto­
chrome c is rapidly reduced by flavin semiquinone generated by 
the laser excitation of 5-deazariboflavin (5-DRF) in the presence 
of EDTA and the ET from ferrocytochrome c to CcO is followed 
by optical spectroscopy. 

Figure 1 shows the kinetic data observed for the intracomplex 
ET between bovine cytochrome c and fully oxidized native bovine 
CcO at 1:1 molar ratio and 110 mM ionic strength.9 The re­
duction of ferricytochrome c by 5-DRF semiquinone and its 
subsequent reoxidation by CcO were monitored at 550 nm (Figure 
IA). The kinetic trace is biphasic and fits well to a sum of two 
exponentials. A rate constant of 1250 ± 63 s~' is obtained for 
the fast phase with an amplitude corresponding to 75% of the total 
signal change. The reduction of cytochrome a was followed at 
604 nm (Figure IB). This reduction is also biphasic with a rate 
constant of 1300 ± 45 s~' for the fast phase. Thus, there is 
excellent correspondence between the reoxidation of the ferro­
cytochrome c and the reduction of cytochrome a in the fast phase. 

Under otherwise identical conditions, the CuA-depleted CcO' 
also displays biphasic kinetics for the reoxidation of ferro­
cytochrome c and reduction of cytochrome a (Figure 2). Whereas 
the rate constants for the slow phase are the same for both the 
native and the CuA-depleted enzymes (slower than 80 s"1), the 
rate constant for the fast phase for the CuA-depleted protein is 
approximately 25% that of the native enzyme. The fitting gives 
300 ± 20 s"1 (at 604 nm) and 320 ± 18 s"1 (at 550 nm). 

The rate constant for the fast kinetic phase (fcobsd) >s dependent 
on the concentration of CcO.5 This dependence is hyperbolic for 
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